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[요    약] 

빅데이터 플랫폼에서, 연관 룰 마이닝 응용프로그램은 여러 가치를 창출할 수 있다. 예를 들어, 농업 빅데이터 플랫폼에서 농가 

소득을 높일 수 있는 농작물들을 농업인들에게 추천할 수 있다. 이 연관 룰 마이닝의 주요 절차는 빈발 아이템셋 마이닝으로, 이는 

동시에 나타나는 아이템의 셋을 찾는 작업이다. Apriori를 비롯한 이전 연구에서는 대규모의 가능한 아이템 셋에 의한 메모리 오버

로드의 이유로 만족할 만한 성능을 보일 수 없었다. 이를 개선하고자, 아이템 셋을 작은 크기로 분할하여 순차적으로 계산하도록 

하는 SON 알고리즘이 제안되었다. 하지만, 단일 머신에서 SON 알고리즘을 돌릴 경우 많은 시간이 소요된다. 이 논문에서는 하둡

기반의 빅데이터 플랫폼에서  SON 알고리즘 병렬처리 방식을 이용한 연관룰 탐색 기법을 소개한다. 연관 룰 마이닝을 위한 전처

리, SON 알고리즘 기반 빈발 아이템셋 마이닝, 그리고 연관룰 검출 절차를 Hadoop기반의 빅데이터 플랫폼에 구현하였다. 실제 데

이터를 활용한 실험을 통해 제안된 연관 룰 마이닝 기법은 Brute Force 기법의 성능을 압도하는 것을 확인하였다.

[Abstract]

In a big data platform, association rule mining applications could bring some benefits. For instance, in a agricultural big data platform,  
the association rule mining application could recommend specific products for farmers to grow, which could increase income. The key 
process of the association rule mining is the frequent itemsets mining, which finds sets of products accompanying together frequently. 
Former researches about this issue, e.g. Apriori, are not satisfying enough because huge possible sets can cause memory to be 
overloaded. In order to deal with it, SON algorithm has been proposed, which divides the considered set into many smaller ones and 
handles them sequently. But in a single machine, SON algorithm cause heavy time consuming. In this paper, we present a method to 
find association rules in our Hadoop based big data platform, by parallelling SON algorithm. The entire process of association rule 
mining including pre-processing, SON algorithm based frequent itemset mining, and association rule finding is implemented on 
Hadoop based big data platform. Through the experiment with real dataset, it is conformed that the proposed method outperforms a 
brute force method.
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I. Introduction

    As being a farmer, choosing which products should be grown 
in a season is a very crucial question, because it is a factor for 
manipulating their income and productivity. Usually, each 
farmer would choose a main product which they think it would 
be most suitable for them. However, in order to get most 
benefits, they should also choose other types to grow with their 
chosen ones [1]. This is a big question because among many 
products, finding the suitable one requires a lot of conditions. 
Beside the best but too much time-consuming and 
experience-required scientific researches methods in Biology 
[1][2], one of the solutions is finding what other 
more-experience farmers often grow together. Following the 
footstep of those seniors, from some already chosen products, 
farmers could choose other suitable ones to combine for their 
season. This solution could be conducted by a well-known 
method called association rules mining.
    Mining the association rules has received attentions from 
many researchers for a long time. The original work of this 
technique is from a work of many retailers like Walmart, 
Amazon: giving a collection of transactions and their 
corresponding purchased items, mining the association rules 
finds items (consequent) which customers could possibly grab 
after taking (some) one(s) (antecedent). In order to implement 
this mining, the prior work should be handled is finding 
frequent itemsets [3]: trying to get all the set of items whose 
rate of appearance over the total number of transaction (a.k.a. 
their support) is larger than a given threshold. Therefore, 
coming back to the agricultural solution as mentioned above: 
considering a given collection of farms as transactions; and 
their corresponding grown products as items, mining the 
association rules could be used to suggest the farmers to choose 
which products should be grown with some given ones, which 
partly supports those people to improve their productivity and 
income.
    The problem of finding frequent itemsets could be solved by 
many algorithms up to now, but most of them is used for only 
the single-machine environment only. The first and original 
method called Brute-Force algorithm (BFA), which lists all the 
possible set of items; then finds their number of appearance in 
each transaction, is too “naive” because it uses too much time 
and memory. A-Priori algorithm [4] follows the idea of the 
BFA, however it finds the frequent itemsets in each levels of 
their increasing length, then in every level; it prunes the 
unsatisfied sets to reduce the number of computations for the 
next phase. Unfortunately, this algorithm could have some 
problems if the number of transactions and number of items are 

too large, causing the single-machine to be not able to handle 
loading all the data from hard dish to the main memory. 
Avoiding this problem, an improvement made by Savarese et 
al. called SON algorithm [5] has been proposed, which divides 
the collection of transactions into non-overlapping smaller ones 
to avoid the problem of overloading memory which a single 
machine could face. 
    In this paper, we propose a method for mining the association 
rules, whose prior work is finding the frequent itemsets based 
on the idea of SON algorithm dividing the big collection of 
transactions for some machines, to process on them. However, 
our method is not conducted in a single machine, but in our 
implemented Hadoop [12] based distributed big data platform 
[8][9][10]. The overall process could be described in Fig. 1. 
First of all, from the collected agriculture data about many 
farms in Korea, by a pre-processing phase, the list of farms with 
their corresponding grown products would be gotten. Then by 
those so-called “transactions”, the frequent itemsets would be 
found. These two above phases are made with the support of 
MapReduce function [11]. Finally, on those results, another 
algorithm based on a former research is utilized to find the 
association rules about the grown agricultural products.
    The rest of this paper is organized as follow: section 2 
overviews the background supporting for mining association 
rules; which includes A-Priori algorithm, SON algorithm and 
association rules mining method, section 3 describes our big 
data platform for storing and processing the Korean agricultural 
data. Section 4 mentions about our method to mine the 
association rules from the agriculture big data. Our evaluation 

Fig. 1.  Overall process for agriculture 
association rules mining 
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is mentioned in section 5 and finally; section 6 is our 
conclusion.

II. Background

Given a set of items   = { , …, } and the collection of 

transactions listing all the item which each user purchased at 
the same time, finding the frequent itemsets is trying to get all 
the set of items, whose rate of appearance over the total number 
of transaction (their support) is larger than a given threshold. As 
being mentioned before, the most basic and naive method BFA 
lists all the possible set of items, then finds their supports in 
each of transaction; which will be a real catastrophe because the 
number of transactions and items are too big. A-Priori and SON 
algorithm are proposed to reduce the number of computation 
needed to be taken.

2-1 A-Priori algorithm 
    Being quite similar to the basic algorithm, A-Priori algorithm 
also generates all the possible sets of items. However, it solves 
the problem with an enhancement: it prunes many unsatisfied 
sets for reducing the number of possible generated ones.  
A-Priori algorithm is described in Algorithm 1.
    As seen in the algorithm, when the number of transactions 
and possible items are too large, this algorithm could make the 
main memory to be overloaded. Considering a case when there 

are m items, so there could be   possible transactions, 

causing the computation complexity is O( ). Consequently, 
an alternative algorithm should be proposed in order to reduce 
the data loaded into the main memory.

2-2 SON algorithm
    SON is a kind of “divide to conquer” algorithm [6]: it first 
splits the overall collection of transactions into smaller 
non-overlapping parts. Afterwards, 2 passing of transactions 
collection are employed to solve the problem. In the first 
passing, a “local” frequent itemsets finding algorithm will be 
executed on each small part with a minimum supply threshold 
being much smaller than the overall one. The output of this 
phase is all of each smaller part’s frequent itemset, which then 
will be aggravated to become the global frequent itemset 
candidates. After that, in order to get their number of 
appearances, a second pass will be executed on each of smaller 
part again. Finally, the total number of appearances of each 
global frequent candidate will be gotten and compared with the 
overall minimum threshold to get the final results. SON 
algorithm is described in Algorithm 2.

2-3 Mining the association rules
    After getting the frequent itemsets, association rules could be 
gotten. Following the article [4], this finding could be 
conducted by making a loop for every found frequent itemset, 
then generating every possible subset of them and calculating a 
so-called confidence. 
    Consider a frequent itemset l whose an instance of subset is 
(a), then the confidence will be calculated by:

    If the confidence of any given rules is larger than a given 
threshold called minimum confidence, this rule will be regarded 
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as an association rule.
    The problem of this method is it considers all the possible 
subsets of the gotten frequent itemset, which is not appropriate. 
In order to improve this method, the authors from [4] also 
suggested 2 methods for finding those rules. The first one is 
generating the subset of each frequent itemset by their length 
increasing in each level: if the minimum confidence condition 
is satisfied by a given subset, it would be added to the output 
list and its own generated subset with length is 1-lower than its 
will be added to the next level for checking. This work is done 
when the generated subset list is blank. The second method is 
quite different: initially, each frequent itemset will generate 
their subsets with length of 1; then if any of those subsets 
satisfies the condition, all of the possible subsets of the 
considered frequent itemset which contains this size-1 one will 
be added to the output list without considering. Afterwards, the 
next level would come with the length increases and without 
the subsets satisfies in the previous level. This implementation 
will be terminated until the length of generated subset reach the 
length of the considered itemset. The latter method seems to be 
more effective than the former one; however, it depends on the 
condition of the data: if the association rules with short length is 
more than the ones with long length, the former will be more 
suitable; and vice versa, the latter will be better to be applied if 
the rules with long length are more than the short ones.
    Employing the first method and considering a case: giving an 
itemset I = {ABCDE}, and in the third level, the subset {AB} 
will be considered at least twice, while it is needed to be 
considered only once. This problem should be solved more 
carefully.

III. Overview of Agriculture big data 

platform

    Previously, to store the agriculture data, we have 
implemented a big data platform [8][9][10]. It ís described in 
Fig. 2.
    Among all the kinds of input data (Sensor, External services 
and Internal data), agricultural farms data is taken from Internal 
ones as CSV files. After being processed for removing the 
redundancy, those data is handled by Sqoop and Flume, to be 
stored in Hadoop distributed file system (HDFS) under the form 
of CSV file. These data is also stored in Hive and Hbase 
Database as well.
    Afterwards, from those data, some analysis like clustering, 
classifications are made to gain the deeper knowledge inside. 
And in this paper, we implement another analysis: Association 
rules mining, which is with the support of MapReduce module 

in our platform. The “transactions” as lists of grown products 
(“items”) will be gotten by dealing with agricultural data stored 
in HDFS. This pre-processing phase as the preparation will 
store the result in HDFS again to prepare for the main mining 
purpose. This method will be described in the next section.

IV. Association rules mining with 

agriculture big data

4-1 Data pre-processing using MapReduce
    On HDFS, the saved CSV file, which contains information 
about farms and their corresponding grown products, comprises 
many lines. Each of them has many fields sequently, like: 
farms’ registration number v1; grown product’s name f25; 
cultivation area f23; studied area f14. However, in the scope of 
this paper, to get only the data needed for the main mining, 2 
fields are considered only: v1 and f25. Each farms could have 
many grown products, consequently in this file, there are many 
rows with the same v1’s value, but the pair v1 and f25 should 
be unique.
    To get the transactions with their corresponding items like 
what has been mentioned, a phase of MapReduce is employed. 
This phase could be described in Fig. 3.
    As seen from the Fig. 3, first of all, the big CSV file 

Fig. 2.   Agricultural Big Data Platform
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containing information about farms and their grown products is 
divided into many smaller parts. Afterwards, they are handled 
by some mappers. The output of this phase is pairs of key and 
value, which are farms’ registration number and grown 
products’ name respectively. Then in the reduce phase, all the 
grown products of all the farms will be aggravated, which will 
return the output containing the transactions and their 
corresponding items.
    After the pre-processing phase, the data is gotten by being 
storied in a file whose each line contains the grown products of 
a specific farm in Korea. In order to make the work easier to 
handle, we implement a hash function to encode each of the 
product with a specific identification number (id). Afterwards, 
our algorithm would work with this id instead of product name.

4-2 SON algorithm based frequent itemset finding on Hadoop
    As seen from the SON algorithm above, the collection of 
transaction is divided to be processed and their results are 
aggregated before being processed again to get the final 
frequent itemsets. Consequently, it’s possible that we could 

apply this algorithm for Hadoop with 2 phases of MapReduce.
    The first phase is described in Fig. 4. In the first map 
procedure, each non-overlapping sub-collection of transaction 
will be assigned for each mapper; in order to get their local 
frequent itemsets   = {{}, ∈ frequent itemsets}. The key 

in this phase is frequent itemset and value is 0 because the 
quantity of frequent set in this phase is not needed. Then in the 
reducer procedure, the map procedure’s results will be 
aggregated together to get the global frequent itemset 
candidates.
    Afterward, in the second map procedure phase, the global 
local frequent itemset candidate will be assigned for each node, 
which has been allocated with sub-collection of transaction 
before, to calculate each of their appearance quantity. Then, the 
second phase’ reduce procedure will aggregate the result of all 
nodes, summarize the number of appearances for each frequent 
itemset candidate. Finally, their support will be calculated and 
compared to decide if they are truly frequent itemsets of the 
main collection or not. This procedure is described in Fig. 5.

Fig. 3.  Pre-processing data using MapReduce Fig. 4. First phase with MapReduce to get global frequent 
itemset candidates
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4-3 Association rules mining
    In this implementation, the first method mentioned in 2.3 is 
used and improved to reduce the number of subset to be 

considered and the number of needed computations. In this 
phase, the master machine is exploited instead of many 
machines like before. Our proposed method is described in 
Algorithm 3.
    The original loop for each satisfied itemsets is used again. 
However, in this improvement, the number of subset for each 
level and the total number of computation are reduced by the 
following cultivation. Firstly, the subset of the considered 
itemset is generated with length is 1-lower than the length of 
the original one’s. Then the array satisfied_subset_list is used, 
which contains the considered itemset’s subset satisfying the 
minimum confidence condition. The key idea for the 
improvement here is using a function called get_next_subsets; 
which is used to avoid making duplicated itemsets, to generate 
the new subset for the next length level. This function generates 
the subset for next level by making loops for each satisfied 
subset in the previous level, then like the original method, it 
lists all of subsets of those sets whose length is 1-lower than 
theirs. What makes the difference here is those generated 
subsets are added to return_hash_list by using a hash table, so 
the duplication case is avoided and each subset in the next level 
will be checked only once.

V. Implementation and evaluation

    To evaluate our implementation, we deployed a Hadoop 
cluster on five machines: one machine for master node, and 
fours for computing nodes. Each machine has 4 CPU and 16GB 
of RAM. There are totally 1,561,632 farms (transactions) and 
739 unique grown products (items); which are taken from 2.4 

Fig. 5.  Second phase with MapReduce to get 
global frequent itemsets

Fig. 6. Comparisons of execution time between our 
proposed algorithms and the original algorithms
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gigabytes of data about agriculture farm in Korea.
    In Fig. 6, a comparison is made between the original methods 
and our proposed improved ones conducted on some sets of 
different transactions quantity. Specifically, the former employs 
the parallel Brute-Force algorithm on Hadoop to get the 
frequent itemsets and the method proposed by [4] for mining 
association rules; while the latter exploits our proposed parallel 
SON algorithm on Hadoop and our improvement for mining the 
final results. Both of them use the pre-processing phase of 
MapReduce for getting the transactions of grown products. 
Beside; an 0.1 minimum support and an 0.6 minimum 
confidence are given for both of the cases. Being seen from this 
Fig., our proposed algorithm uses much less time than the 
original ones, especially in the frequent itemsets mining phase.

Table 1. Evaluation of the pre-processing phase. 

    We also make some more evaluations in each phase. Our first 
evaluation is conducted with the pre-processing phase; which is 
described in Table 1, for getting the list of farms and their 
corresponding grown products. This evaluation is made by 
dividing the original data into some smaller parts with different 
volumes; then the pre-processing program is executed on them. 
As seen from Table 1, with the increasing of the data volume 
from 800 Mb to 2400 Mb; the executed time increases too; but 
in a marginal way: from 24 seconds to only 39 seconds.
    For the second evaluation, we make a comparison of the 
executing time between BFA conducted in parallel mode and 
our proposed system with the same environment. The minimum 
support is set to 0.1 for all the cases. As be shown in Fig. 7, by 
the increasing of the transactions quantities, executing time 
used by both of the above methods increases too. Nevertheless, 
while the executing time by the former increases significantly, 
it increases marginally following the latter; proving that our 
algorithm is much better than the BFA. We also made some 
experiments with higher quantity of transaction, but the Parallel 
BFA could not handle the enormous volume of data and fails 
easily, while our proposed algorithm could still handle it well.

    Afterwards, our evaluation is conducted with the minimum 
threshold of support to be decreased. Being observable from 
Fig. 8, the execution time decreases much when the threshold 
increases from 0.04 to 0.05, then it decreases mildly when the 

Volume of  
Data(Mb)

Number of  
records

Executed 
time(s)

Number of 
gotten  
transactions

800 4,053,802 24 419,569
1200 6,082,807 28 642,614
1600 8,110,107 32 909,954

2000 10,100,124 36 1,261,391

2400  
(original)

11,275,355 39 1,561,632

Fig. 7. Comparison of execution time between Parallel 
SON algorithm  and Parallel Brute-Force algorithm 
on Hadoop

Fig. 8.  Evaluation by the minimum support threshold

Fig. 9.  Comparisons of execution time between the 
association rules mining method proposed by [4] 
and our improved one.
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latter increases to 0.1. It could be explained that when the 
threshold is low, there are many frequent itemsets  generated, 
so the execution time is quite high at first.
    Subsequently, a comparison between the method for mining 
association rules proposed by [4] and our improved one is 
described in Fig. 9. This evaluation is made with the change of 
number of transactions from 419,569 to 1,561,682. Because the 
duplication of considered subsets is handled; our proposed 
method spends a little less time comparing to the compared one. 
With the increasing of the transactions’ number; the difference 
becomes more significant.

    In the final evaluation, based on the found association rules 
made by Algorithm 3, a mapping from the id of the product to 
its name is made. Fig. 10 describes the output of this phase. It 
contains the antecedent; consequent; rule’s confidence; number 
of transaction containing both of consequent and antecedent 
and number of transaction containing the antecedent sequently. 
Taking a peek at any rule, it could be understood that when 
some products on the left of the arrow (→) are chosen as 
antecedent, there is a rate whose value is Confidence percentage 
for the products on the right side of the arrow to be picked as 
consequent. Also, the information about the number of 
transactions containing consequent and antecedent over (/) the 
number of transactions containing antecedent could be used to 
describe specifically the mentioned rate above. In this 
experiment, the minimum support is set as 0.01 and the 
minimum confidence is set as 0.6.

VI. Conclusion

    In this paper, we paralleled SON algorithm for finding 
frequent itemset on distributed environment, then the 

association rules mining is conducted. We implemented 2 
phases of MapReduce to deal with the problem of large dataset, 
which a single machine could not handle well. In the future, we 
will focus on optimizing the algorithm by using Spark [7]. 
Moreover, we will also focus on other conditions like the 
income, growing area to make the recommendation better.
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