
Copyright ⓒ 2017 The Digital Contents Society 1593 http://www.dcs.or.kr pISSN: 1598-2009 eISSN: 2287-738X

JDCS 디지털콘텐츠학회논문지
Journal of Digital Contents Society
Vol. 18, No. 8, pp. 1593-1601, Dec. 2017

빅데이터 플랫폼을 위한 SON알고리즘 기반의 효과적인 연관 룰 마이닝

뉘엔양쯔엉 · 뉘엔반퀴엣 · 뉘엔신응억 · 김경백*

전자컴퓨터공학부, 전남대학과

Efficient Association Rule Mining based SON Algorithm for a
Bigdata Platform
Giang-Truong Nguyen · Van-Quyet Nguyen · Sinh-Ngoc Nguyen · Kyungbaek Kim*

Department of Electronics and Computer Engineering, Chonnam National University

[요 약]

빅데이터 플랫폼에서, 연관 룰 마이닝 응용프로그램은 여러 가치를 창출할 수 있다. 예를 들어, 농업 빅데이터 플랫폼에서 농가

소득을 높일 수 있는 농작물들을 농업인들에게 추천할 수 있다. 이 연관 룰 마이닝의 주요 절차는 빈발 아이템셋 마이닝으로, 이는

동시에 나타나는 아이템의 셋을 찾는 작업이다. Apriori를 비롯한 이전 연구에서는 대규모의 가능한 아이템 셋에 의한 메모리 오버

로드의 이유로 만족할 만한 성능을 보일 수 없었다. 이를 개선하고자, 아이템 셋을 작은 크기로 분할하여 순차적으로 계산하도록

하는 SON 알고리즘이 제안되었다. 하지만, 단일 머신에서 SON 알고리즘을 돌릴 경우 많은 시간이 소요된다. 이 논문에서는 하둡

기반의 빅데이터 플랫폼에서 SON 알고리즘 병렬처리 방식을 이용한 연관룰 탐색 기법을 소개한다. 연관 룰 마이닝을 위한 전처

리, SON 알고리즘 기반 빈발 아이템셋 마이닝, 그리고 연관룰 검출 절차를 Hadoop기반의 빅데이터 플랫폼에 구현하였다. 실제 데

이터를 활용한 실험을 통해 제안된 연관 룰 마이닝 기법은 Brute Force 기법의 성능을 압도하는 것을 확인하였다.

[Abstract]

In a big data platform, association rule mining applications could bring some benefits. For instance, in a agricultural big data platform,
the association rule mining application could recommend specific products for farmers to grow, which could increase income. The key
process of the association rule mining is the frequent itemsets mining, which finds sets of products accompanying together frequently.
Former researches about this issue, e.g. Apriori, are not satisfying enough because huge possible sets can cause memory to be
overloaded. In order to deal with it, SON algorithm has been proposed, which divides the considered set into many smaller ones and
handles them sequently. But in a single machine, SON algorithm cause heavy time consuming. In this paper, we present a method to
find association rules in our Hadoop based big data platform, by parallelling SON algorithm. The entire process of association rule
mining including pre-processing, SON algorithm based frequent itemset mining, and association rule finding is implemented on
Hadoop based big data platform. Through the experiment with real dataset, it is conformed that the proposed method outperforms a
brute force method.
색인어 : 빅데이터 플랫폼, 연관 룰 마이닝, 빈발 아이템셋, SON 알고리즘

Key word : Big data Platform, Association Rule Mining, Frequent Itemsets, SON Algorithm

http://dx.doi.org/10.9728/dcs.2017.18.8.1593

This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons.

org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Received 21 September 2017; Revised 21 September 2017
Accepted 25 December 2017

*Corresponding Author: Kyungbaek Kim

Tel: +82-62-530-3438
E-mail: kyungbaekkim@jnu.ac.kr

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 8, pp. 1593-1601, Dec. 2017

http://dx.doi.org/10.9728/dcs.2017.18.8.1593 1594

I. Introduction

 As being a farmer, choosing which products should be grown
in a season is a very crucial question, because it is a factor for
manipulating their income and productivity. Usually, each
farmer would choose a main product which they think it would
be most suitable for them. However, in order to get most
benefits, they should also choose other types to grow with their
chosen ones [1]. This is a big question because among many
products, finding the suitable one requires a lot of conditions.
Beside the best but too much time-consuming and
experience-required scientific researches methods in Biology
[1][2], one of the solutions is finding what other
more-experience farmers often grow together. Following the
footstep of those seniors, from some already chosen products,
farmers could choose other suitable ones to combine for their
season. This solution could be conducted by a well-known
method called association rules mining.
 Mining the association rules has received attentions from
many researchers for a long time. The original work of this
technique is from a work of many retailers like Walmart,
Amazon: giving a collection of transactions and their
corresponding purchased items, mining the association rules
finds items (consequent) which customers could possibly grab
after taking (some) one(s) (antecedent). In order to implement
this mining, the prior work should be handled is finding
frequent itemsets [3]: trying to get all the set of items whose
rate of appearance over the total number of transaction (a.k.a.
their support) is larger than a given threshold. Therefore,
coming back to the agricultural solution as mentioned above:
considering a given collection of farms as transactions; and
their corresponding grown products as items, mining the
association rules could be used to suggest the farmers to choose
which products should be grown with some given ones, which
partly supports those people to improve their productivity and
income.
 The problem of finding frequent itemsets could be solved by
many algorithms up to now, but most of them is used for only
the single-machine environment only. The first and original
method called Brute-Force algorithm (BFA), which lists all the
possible set of items; then finds their number of appearance in
each transaction, is too “naive” because it uses too much time
and memory. A-Priori algorithm [4] follows the idea of the
BFA, however it finds the frequent itemsets in each levels of
their increasing length, then in every level; it prunes the
unsatisfied sets to reduce the number of computations for the
next phase. Unfortunately, this algorithm could have some
problems if the number of transactions and number of items are

too large, causing the single-machine to be not able to handle
loading all the data from hard dish to the main memory.
Avoiding this problem, an improvement made by Savarese et
al. called SON algorithm [5] has been proposed, which divides
the collection of transactions into non-overlapping smaller ones
to avoid the problem of overloading memory which a single
machine could face.
 In this paper, we propose a method for mining the association
rules, whose prior work is finding the frequent itemsets based
on the idea of SON algorithm dividing the big collection of
transactions for some machines, to process on them. However,
our method is not conducted in a single machine, but in our
implemented Hadoop [12] based distributed big data platform
[8][9][10]. The overall process could be described in Fig. 1.
First of all, from the collected agriculture data about many
farms in Korea, by a pre-processing phase, the list of farms with
their corresponding grown products would be gotten. Then by
those so-called “transactions”, the frequent itemsets would be
found. These two above phases are made with the support of
MapReduce function [11]. Finally, on those results, another
algorithm based on a former research is utilized to find the
association rules about the grown agricultural products.
 The rest of this paper is organized as follow: section 2
overviews the background supporting for mining association
rules; which includes A-Priori algorithm, SON algorithm and
association rules mining method, section 3 describes our big
data platform for storing and processing the Korean agricultural
data. Section 4 mentions about our method to mine the
association rules from the agriculture big data. Our evaluation

Fig. 1. Overall process for agriculture
association rules mining

 Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform

1595 http://www.dcs.or.kr

is mentioned in section 5 and finally; section 6 is our
conclusion.

II. Background

Given a set of items = { , …, } and the collection of

transactions listing all the item which each user purchased at
the same time, finding the frequent itemsets is trying to get all
the set of items, whose rate of appearance over the total number
of transaction (their support) is larger than a given threshold. As
being mentioned before, the most basic and naive method BFA
lists all the possible set of items, then finds their supports in
each of transaction; which will be a real catastrophe because the
number of transactions and items are too big. A-Priori and SON
algorithm are proposed to reduce the number of computation
needed to be taken.

2-1 A-Priori algorithm
 Being quite similar to the basic algorithm, A-Priori algorithm
also generates all the possible sets of items. However, it solves
the problem with an enhancement: it prunes many unsatisfied
sets for reducing the number of possible generated ones.
A-Priori algorithm is described in Algorithm 1.
 As seen in the algorithm, when the number of transactions
and possible items are too large, this algorithm could make the
main memory to be overloaded. Considering a case when there

are m items, so there could be possible transactions,

causing the computation complexity is O(). Consequently,
an alternative algorithm should be proposed in order to reduce
the data loaded into the main memory.

2-2 SON algorithm
 SON is a kind of “divide to conquer” algorithm [6]: it first
splits the overall collection of transactions into smaller
non-overlapping parts. Afterwards, 2 passing of transactions
collection are employed to solve the problem. In the first
passing, a “local” frequent itemsets finding algorithm will be
executed on each small part with a minimum supply threshold
being much smaller than the overall one. The output of this
phase is all of each smaller part’s frequent itemset, which then
will be aggravated to become the global frequent itemset
candidates. After that, in order to get their number of
appearances, a second pass will be executed on each of smaller
part again. Finally, the total number of appearances of each
global frequent candidate will be gotten and compared with the
overall minimum threshold to get the final results. SON
algorithm is described in Algorithm 2.

2-3 Mining the association rules
 After getting the frequent itemsets, association rules could be
gotten. Following the article [4], this finding could be
conducted by making a loop for every found frequent itemset,
then generating every possible subset of them and calculating a
so-called confidence.
 Consider a frequent itemset l whose an instance of subset is
(a), then the confidence will be calculated by:

 If the confidence of any given rules is larger than a given
threshold called minimum confidence, this rule will be regarded

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 8, pp. 1593-1601, Dec. 2017

http://dx.doi.org/10.9728/dcs.2017.18.8.1593 1596

as an association rule.
 The problem of this method is it considers all the possible
subsets of the gotten frequent itemset, which is not appropriate.
In order to improve this method, the authors from [4] also
suggested 2 methods for finding those rules. The first one is
generating the subset of each frequent itemset by their length
increasing in each level: if the minimum confidence condition
is satisfied by a given subset, it would be added to the output
list and its own generated subset with length is 1-lower than its
will be added to the next level for checking. This work is done
when the generated subset list is blank. The second method is
quite different: initially, each frequent itemset will generate
their subsets with length of 1; then if any of those subsets
satisfies the condition, all of the possible subsets of the
considered frequent itemset which contains this size-1 one will
be added to the output list without considering. Afterwards, the
next level would come with the length increases and without
the subsets satisfies in the previous level. This implementation
will be terminated until the length of generated subset reach the
length of the considered itemset. The latter method seems to be
more effective than the former one; however, it depends on the
condition of the data: if the association rules with short length is
more than the ones with long length, the former will be more
suitable; and vice versa, the latter will be better to be applied if
the rules with long length are more than the short ones.
 Employing the first method and considering a case: giving an
itemset I = {ABCDE}, and in the third level, the subset {AB}
will be considered at least twice, while it is needed to be
considered only once. This problem should be solved more
carefully.

III. Overview of Agriculture big data

platform

 Previously, to store the agriculture data, we have
implemented a big data platform [8][9][10]. It ís described in
Fig. 2.
 Among all the kinds of input data (Sensor, External services
and Internal data), agricultural farms data is taken from Internal
ones as CSV files. After being processed for removing the
redundancy, those data is handled by Sqoop and Flume, to be
stored in Hadoop distributed file system (HDFS) under the form
of CSV file. These data is also stored in Hive and Hbase
Database as well.
 Afterwards, from those data, some analysis like clustering,
classifications are made to gain the deeper knowledge inside.
And in this paper, we implement another analysis: Association
rules mining, which is with the support of MapReduce module

in our platform. The “transactions” as lists of grown products
(“items”) will be gotten by dealing with agricultural data stored
in HDFS. This pre-processing phase as the preparation will
store the result in HDFS again to prepare for the main mining
purpose. This method will be described in the next section.

IV. Association rules mining with

agriculture big data

4-1 Data pre-processing using MapReduce
 On HDFS, the saved CSV file, which contains information
about farms and their corresponding grown products, comprises
many lines. Each of them has many fields sequently, like:
farms’ registration number v1; grown product’s name f25;
cultivation area f23; studied area f14. However, in the scope of
this paper, to get only the data needed for the main mining, 2
fields are considered only: v1 and f25. Each farms could have
many grown products, consequently in this file, there are many
rows with the same v1’s value, but the pair v1 and f25 should
be unique.
 To get the transactions with their corresponding items like
what has been mentioned, a phase of MapReduce is employed.
This phase could be described in Fig. 3.
 As seen from the Fig. 3, first of all, the big CSV file

Fig. 2. Agricultural Big Data Platform

 Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform

1597 http://www.dcs.or.kr

containing information about farms and their grown products is
divided into many smaller parts. Afterwards, they are handled
by some mappers. The output of this phase is pairs of key and
value, which are farms’ registration number and grown
products’ name respectively. Then in the reduce phase, all the
grown products of all the farms will be aggravated, which will
return the output containing the transactions and their
corresponding items.
 After the pre-processing phase, the data is gotten by being
storied in a file whose each line contains the grown products of
a specific farm in Korea. In order to make the work easier to
handle, we implement a hash function to encode each of the
product with a specific identification number (id). Afterwards,
our algorithm would work with this id instead of product name.

4-2 SON algorithm based frequent itemset finding on Hadoop
 As seen from the SON algorithm above, the collection of
transaction is divided to be processed and their results are
aggregated before being processed again to get the final
frequent itemsets. Consequently, it’s possible that we could

apply this algorithm for Hadoop with 2 phases of MapReduce.
 The first phase is described in Fig. 4. In the first map
procedure, each non-overlapping sub-collection of transaction
will be assigned for each mapper; in order to get their local
frequent itemsets = {{}, ∈ frequent itemsets}. The key

in this phase is frequent itemset and value is 0 because the
quantity of frequent set in this phase is not needed. Then in the
reducer procedure, the map procedure’s results will be
aggregated together to get the global frequent itemset
candidates.
 Afterward, in the second map procedure phase, the global
local frequent itemset candidate will be assigned for each node,
which has been allocated with sub-collection of transaction
before, to calculate each of their appearance quantity. Then, the
second phase’ reduce procedure will aggregate the result of all
nodes, summarize the number of appearances for each frequent
itemset candidate. Finally, their support will be calculated and
compared to decide if they are truly frequent itemsets of the
main collection or not. This procedure is described in Fig. 5.

Fig. 3. Pre-processing data using MapReduce Fig. 4. First phase with MapReduce to get global frequent
itemset candidates

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 8, pp. 1593-1601, Dec. 2017

http://dx.doi.org/10.9728/dcs.2017.18.8.1593 1598

4-3 Association rules mining
 In this implementation, the first method mentioned in 2.3 is
used and improved to reduce the number of subset to be

considered and the number of needed computations. In this
phase, the master machine is exploited instead of many
machines like before. Our proposed method is described in
Algorithm 3.
 The original loop for each satisfied itemsets is used again.
However, in this improvement, the number of subset for each
level and the total number of computation are reduced by the
following cultivation. Firstly, the subset of the considered
itemset is generated with length is 1-lower than the length of
the original one’s. Then the array satisfied_subset_list is used,
which contains the considered itemset’s subset satisfying the
minimum confidence condition. The key idea for the
improvement here is using a function called get_next_subsets;
which is used to avoid making duplicated itemsets, to generate
the new subset for the next length level. This function generates
the subset for next level by making loops for each satisfied
subset in the previous level, then like the original method, it
lists all of subsets of those sets whose length is 1-lower than
theirs. What makes the difference here is those generated
subsets are added to return_hash_list by using a hash table, so
the duplication case is avoided and each subset in the next level
will be checked only once.

V. Implementation and evaluation

 To evaluate our implementation, we deployed a Hadoop
cluster on five machines: one machine for master node, and
fours for computing nodes. Each machine has 4 CPU and 16GB
of RAM. There are totally 1,561,632 farms (transactions) and
739 unique grown products (items); which are taken from 2.4

Fig. 5. Second phase with MapReduce to get
global frequent itemsets

Fig. 6. Comparisons of execution time between our
proposed algorithms and the original algorithms

 Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform

1599 http://www.dcs.or.kr

gigabytes of data about agriculture farm in Korea.
 In Fig. 6, a comparison is made between the original methods
and our proposed improved ones conducted on some sets of
different transactions quantity. Specifically, the former employs
the parallel Brute-Force algorithm on Hadoop to get the
frequent itemsets and the method proposed by [4] for mining
association rules; while the latter exploits our proposed parallel
SON algorithm on Hadoop and our improvement for mining the
final results. Both of them use the pre-processing phase of
MapReduce for getting the transactions of grown products.
Beside; an 0.1 minimum support and an 0.6 minimum
confidence are given for both of the cases. Being seen from this
Fig., our proposed algorithm uses much less time than the
original ones, especially in the frequent itemsets mining phase.

Table 1. Evaluation of the pre-processing phase.

 We also make some more evaluations in each phase. Our first
evaluation is conducted with the pre-processing phase; which is
described in Table 1, for getting the list of farms and their
corresponding grown products. This evaluation is made by
dividing the original data into some smaller parts with different
volumes; then the pre-processing program is executed on them.
As seen from Table 1, with the increasing of the data volume
from 800 Mb to 2400 Mb; the executed time increases too; but
in a marginal way: from 24 seconds to only 39 seconds.
 For the second evaluation, we make a comparison of the
executing time between BFA conducted in parallel mode and
our proposed system with the same environment. The minimum
support is set to 0.1 for all the cases. As be shown in Fig. 7, by
the increasing of the transactions quantities, executing time
used by both of the above methods increases too. Nevertheless,
while the executing time by the former increases significantly,
it increases marginally following the latter; proving that our
algorithm is much better than the BFA. We also made some
experiments with higher quantity of transaction, but the Parallel
BFA could not handle the enormous volume of data and fails
easily, while our proposed algorithm could still handle it well.

 Afterwards, our evaluation is conducted with the minimum
threshold of support to be decreased. Being observable from
Fig. 8, the execution time decreases much when the threshold
increases from 0.04 to 0.05, then it decreases mildly when the

Volume of
Data(Mb)

Number of
records

Executed
time(s)

Number of
gotten
transactions

800 4,053,802 24 419,569
1200 6,082,807 28 642,614
1600 8,110,107 32 909,954

2000 10,100,124 36 1,261,391

2400
(original)

11,275,355 39 1,561,632

Fig. 7. Comparison of execution time between Parallel
SON algorithm and Parallel Brute-Force algorithm
on Hadoop

Fig. 8. Evaluation by the minimum support threshold

Fig. 9. Comparisons of execution time between the
association rules mining method proposed by [4]
and our improved one.

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 8, pp. 1593-1601, Dec. 2017

http://dx.doi.org/10.9728/dcs.2017.18.8.1593 1600

latter increases to 0.1. It could be explained that when the
threshold is low, there are many frequent itemsets generated,
so the execution time is quite high at first.
 Subsequently, a comparison between the method for mining
association rules proposed by [4] and our improved one is
described in Fig. 9. This evaluation is made with the change of
number of transactions from 419,569 to 1,561,682. Because the
duplication of considered subsets is handled; our proposed
method spends a little less time comparing to the compared one.
With the increasing of the transactions’ number; the difference
becomes more significant.

 In the final evaluation, based on the found association rules
made by Algorithm 3, a mapping from the id of the product to
its name is made. Fig. 10 describes the output of this phase. It
contains the antecedent; consequent; rule’s confidence; number
of transaction containing both of consequent and antecedent
and number of transaction containing the antecedent sequently.
Taking a peek at any rule, it could be understood that when
some products on the left of the arrow (→) are chosen as
antecedent, there is a rate whose value is Confidence percentage
for the products on the right side of the arrow to be picked as
consequent. Also, the information about the number of
transactions containing consequent and antecedent over (/) the
number of transactions containing antecedent could be used to
describe specifically the mentioned rate above. In this
experiment, the minimum support is set as 0.01 and the
minimum confidence is set as 0.6.

VI. Conclusion

 In this paper, we paralleled SON algorithm for finding
frequent itemset on distributed environment, then the

association rules mining is conducted. We implemented 2
phases of MapReduce to deal with the problem of large dataset,
which a single machine could not handle well. In the future, we
will focus on optimizing the algorithm by using Spark [7].
Moreover, we will also focus on other conditions like the
income, growing area to make the recommendation better.

Acknowledgment

This work was supported by the National Research Foundation
of Korea Grant funded by the Korean Government
(NRF-2014R1A1A1007734). This work was carried out with the
support of "Cooperative Research Program for Agriculture
Science and Technology Development (Project No.
PJ011823022017)" Rural Development Administration, Republic
of Korea.

References

[1] https://www.growingmagazine.com/fruits/crop-selection/
[2] http://www.cropsreview.com/crop-selection.html
[3] WIREs Data Mining Knowl Discov 2012, 2: 437–456 doi:
10.1002/widm.1074
[4] Agrawal, Rakesh, and Ramakrishnan Srikant. "Fast
algorithms for mining association rules." Proc. 20th int. conf.
very large data bases, VLDB. Vol. 1215. 1994.
[5] Savasere, Ashok, Edward Robert Omiecinski, and Shamkant
B. Navathe. An efficient algorithm for mining association rules
in large databases. Georgia Institute of Technology, 1995.APA
[6] Divide and conquer algorithm
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
[7] https://spark.apache.org/
[8] Van-Quyet Nguyen, Sinh Ngoc Nguyen, Kyungbaek Kim,
"Design of a Platform for Collecting and Analyzing
Agricultural Big Data", Journal of Digital Contents Society
Vol.18 No.1 pp. 149-158, Feburary 28, 2017.
[9] Van-Quyet Nguyen, Sinh Ngoc Nguyen, Duc Tiep Vu,
Kyungbaek Kim, "Design and Implementation of Big Data
Platform for Image Processing in Agriculture", In Proceedings
of KIPS Fall Conference November 04-05, 2016, Pusan
National University, Busan, South Korea.
[10] Ngoc Nguyen-Sinh, Quyet Nguyen-Van, Kyungbaek Kim,
"Design of Spark based Agricultural Big Data Analysis
Platform", In Proceedings of KISM Spring Conference April
29-30, 2016, Silla University, Busan, South Korea.
[11] MapReduce function
https://en.wikipedia.org/wiki/MapReduce
[12] Apache Hadoop
http://hadoop.apache.org/

Fig. 10. The output of association rules
mining

 Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform

1601 http://www.dcs.or.kr

Giang-Truong Nguyen

2010: Hanoi University of Science and Technology (B.S. Degree)
2017: Chonnam National University, South Korea (M.S. Degree).

2015～2017 : Software Engineer at VNIST
2017～now： School of Electronics and Computer Engineering
※ Research Interest： Big Data Platform, Recommendation Systems

Van-Quyet Nguyen

2005: Hung Yen University of Technology and Education. (B.S. Degree).
2011: Hanoi University of Science and Technology (M.S. Degree).
2015: Chonnam National University. South Korea (Ph.D Degree).

2009～2015: Lecturer in Hung Yen University of Technology and Education.
2015～now： School of Electronics and Computer Engineering.

※ Research Interest： Big Data Platform, Content Delivery Network, Recommendation Systems

Kyungbaek Kim

1999: Korea Advanced Institute of Science and Technology (KAIST) (B.S. Degree)
2001: Korea Advanced Institute of Science and Technology (KAIST) (M.S Degree)
2007: Korea Advanced Institute of Science and Technology (KAIST) (Ph.D Degree)

2007~2011: Postdoctoral Researcher in University of California Irvine
2012~ now : Professor in Chonnam National University, Gwangju, Korea
※ Research Interest : Distributed System, Middleware, P2P/Overlay Network, Social Network, SDN

Sinh-Ngoc Nguyen

2009: VietNam National University Ho Chi Minh City - University of Information
Technology (B.S. Degree)

2015: Chonnam National University, South Korea (M.S. Degree).

2013～2015 : Software Engineer at Integrated Circuit Design Research and Education Center
2015～now： School of Electronics and Computer Engineering
※ Research Interest： Big Data Platform, Software Defined Network, IoT Security

